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We study Taylor diffusion for the case when the diffusion transverse to the bulk 
motion is a persistent random walk on a one-dimensional lattice. This is map- 
ped onto a Markovian walk where each lattice site has two internal states. For 
such a model we find the effective diffusion coefficient which depends on the rate 
of transition among internal states of the lattice. The Markovian limit is 
recovered in the limit of infinite rate of transitions among internal states; the 
initial conditions have no role in the leading-order time-dependent term of the 
effective dispersion, but a strong effect on the constant term. We derive a con- 
tinuum limit of the problem presented and study the asymptotic behavior of 
such limit. 

KEY WORDS: Taylor diffusion: non-Markovian processes: composite 
stochastic processes. 

1. I N T R O D U C T I O N  

In this paper  we study a case of what  has been called composi te  stochastic 
processesJ ~1 A physical example of such a process is Taylor  dispersionJ 21 
In this example, the dispersion in posi t ion of a particle suspended in a fluid 
that is undergo ing  laminar  flow through a cylinder is enhanced by the 
radial mot ion  of the particle, which changes by a diffusion process. 
Chromatography  is another  examples, t3~ 

Van den Broeck and  Mazo 14~ have studied a closely related model. 

One has pariicles moving  parallel  to the x axis, as above. The y axis, 
however, is divided into strata; an equivalent  descript ion is that the y axis 
is a one-d imens ional  lattice. The particles make  a r a n d o m  walk a mong  the 
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strata (lattice sites) while undergoing convection in the x direction. The 
convective velocity of a particle at any given time thus becomes a random 
variable. 

The random walk between the strata was treated as a Pearson walk 
between nearest neighbor strata. In this paper, we study the same general 
problem for the case when the random walk is persistent. 15-7~ A persistent 
walk in one dimension is a random walk in which the probability of 
moving to the right or to the left in the nth step depends on the direc t ion  
of the move taken at step n -  1. 

The physical interest of this problem is to see if the persistence of the 
walk has any effect on the longitudinal (i.e., x direction) dispersion of the 
particle positions about their mean. Taylor dispersion is a common method 
of measuring diffusion coefficients in fluids, so it is important to investigate 
all facets of the connection between the measured dispersion and the 
molecular diffusion coefficient. 

In Taylor dispersion, the dispersion of the x position of particles about 
their mean varies linearly with time, ( (~x)  2) ~ t, for long times. Here, long 
times means those longer than necessary for the convecting particle to 
sample the entire transverse (y direction) velocity field. Thus the fact that 
the system is bounded in the y direction is essential, as well as correspond- 
ing to many experimental conditions. Variants of the dispersion problem in 
which the 3' direction is unbounded have been studied, and the results are 
quite different from those of Taylor. 

In particular, Matheron and de Marsily ~8~ have considered the case of 
a layered medium where the velocities in each layer are random variables, 
but the walk between layers is Markovian; they started from the conven- 
tional convective-diffusion equation. They were interested in a system of 
large transverse width, and time short according to the definition above. 
Hence they made the approximation that the medium was unbounded. 
Some aspects of this problem were also treated by Mazo and Van den 
BroeckJ 9~ In this problem, the dispersion varies as t 3/2. Similar results were 
found by Gaveau and ShulmanJ ~~ Ben-Naim et  al. ~1~ considered the 
problem in which the longitudinal velocity varied as y/S and found a 
longitudinal dispersion varying as t 2§ This work is also based on the 
conventional convective diffusion equation and assumed an unbounded 
medium. 

It is not at all surprising that the long-time bounded-medium result 
does not show up in these works. In an infinite medium a particle never has 
time to sample the entire distribution of longitudinal velocities. A similar 
difference between a finite and an infinite system shows up in the related 
problem of spin depolarization ~12' 13~ by random walk. All our results are 
for the case of a finite system with reflecting boundary conditions. 
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2. THE  M O D E L  A N D  ITS E Q U A T I O N S  OF M O T I O N  

The persistent random walk we use in this article is that treated in the 
model of Kac, 17~ with the addition of a convective term. The model is 
slightly different from that of Goldstein, t6~ reviewed by Weiss and Rubin. c4~ 
A random walk with persistence is non-Markovian. We treat it by the 
known technique of embedding it in a higher dimensional Markov process, 
i.e., a Markov random walk in which the walker has internal states, which 
we label by the symbols + and - .  The walk is on an N-site lattice in 
continuous time. 

Denote the probability that the walker is on lattice site j at 
longitudinal position x at time t while in internal state ~, by Pj(~, x, t). 
Here ~ = + is to be interpreted as the step leading to the walker's presence 
at site j originating at site j -  1; ct = - indicates that the origin of the pre- 
vious step was j + l .  Transitions such as (j, + ) - - * ( j + l , - )  are not 
allowed in this model. The transition rate for j ~ j + 1 in time dt is denoted 
by k jd t+o(d t ) ;  the rate f o r j ~ j - 1  in dt is l id t+o(dt ) .  

Particles do not retain their internal state indefinitely. We assume that 
the memory of the direction of the last step decays in time, so that the 
probability of the transitions (j, + ) ~ (j, - ) and (j, - ) ~ (j, + ) in time 
dt is r dt + o(dt). The rate r is a kind of inverse lifetime of the internal state. 
uj is the longitudinal velocity of a particle in stratum j. 

Applying the usual balance-of-probability arguments (change equals 
gain minus loss) to the states (j, + )  and (j, - ) ,  one obtains easily 

Pj( +, x +tgdt ,  t + d t ) = k j _ ~  dtPj_,(  +, x, t ) + r d t P j ( - ,  x, t) 

+(1 - ( k j  + r )d t )  P j ( + , x ,  t) (1) 

and a similar equation for P j ( - ,  x + tgdt, t +dt).  The quantity of interest 
to us is the total probability of being in state j, 

Pj Ix ,  t) = Pj(  + ,  x,  t) + p j (  - ,  x ,  t) 

For reasons of symmetry we introduce the quantity 

(2a) 

Gj(x, t) = Pi( +, x, t) - Pj( - ,  x, t) (2b) 

for the second dependent variable at site j. Equations (2) can be expressed 
in terms of Pj and Gj as (written in matrix form for convenience) 

O,P(x, t ) =  - U  O.,.P(x, t) + KP(x, t) + LG(x, t) (3) 

O,G(x, t )=  - U  O,.G(x, t )+  LP(x,  t ) -  2rlG(x, t )+  KG(x, t) (4) 



168 Soto-Campos and Mazo 

Here P = c o l ( P  I ..... PN), G=co l (G i  ..... Gu), U = diag( Ul ..... UN), and 

. . . .  . . . .  

Lj.m=l Ekj-l(~j_l .... -6+ |(~j+ l .m-(kj- l j )  6j.m] 

The moments, in particular the first and the second moments of P, are 
the quantities most closely related to experiments. It is easy to eliminate G 
between Eqs. (3) and (4) when U = 0 ,  i.e., in the case of no convection. 
However, since the matrices K and U do not commute, we have not been 
able to eliminate G from the pair (3), (4). Consequently, in evaluating the 
moments of P we must use both members of the pair. 

3. M O M E N T S  OF THE DISTRIBUTION,  P 

It is useful to introduce a barycentric coordinate system traveling with 
the mean velocity of the flow ~7 = N s t  s t  ~ , , =  ~ u,,Pm, where P; is the asymptotic, 
steady-state value of Pi(x, t) as t --* oo. The barycentric longitudinal coor- 
dinate is r = x -  ~7t. It is also useful to Laplace translbrm the resulting dif- 
ferential equations; Laplace transforms are denoted by superior tildes, and 
z is the Laplace variable. 

The resulting equations of motion in Laplace space are, in matrix 
notation, 

zP(~, z) - P(~, t = 0) = - (U - ~1) 0r z) + K/~(~, z) + L(~(~, z) (5a) 

:G(~, z)  - G ( ~ ,  t = 0)  = - ( U  - U )  O r  z )  + L /~(~ ,  z )  

- 2rlC(~, z) + KC(~, z) (5b) 

The probability that a particle is at position ~ regardless of which 
stratum it resides in is 

N 

P(~, t ) =  Y' Pj(~, t) (6) 
j = l  

G(r t) is defined similarly, and P and C are their Laplace transforms. Now 
let us define the "moments" by 

Jp(z)~ ~PP(r z) dr (7a) 

Ip(z) = ~PC(~, z) d~ (7b) 
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The word "moments" has been written in quotation marks because G(~, t) 
is not a probability distribution. [Strictly speaking, neither is P(~, z); it is 
the Laplace transform of a probability distribution.] Indeed, G(~, t) need 
not be positive. Nevertheless, for the sake of brevity, we shall refer to the 
quantities (7a) and (7b) as moments. Jp and I e satisfy the equations 

J p = p ( z - K ) - ' ( U - L l ) J p _ , + ( z - K ) - ' L I p + ( z - K ) - '  Jp, o (8a) 

I , =  p(= + 2 r -  K ) - 1 ( U -  F_J) Ip_ l 

+ ( z  + 2 r - K )  -I  L J , +  (z + 2 r - K )  -1 Ip, o (Sb) 

Here Jp. o = I ~PP(~, t = 0 ) d ~ ,  and similarly for/p.o. The central moments 
of the distribution P are given by 

N 
<(6r = ~ (Jp),, (9) 

m =  l 

where di~ = ~ - ( ~ ) .  These central moments depend, in general, on the 
initial conditions embedded in J,, o and I,, o- We compute here the first and 
second moments for arbitrary initial conditions. 

Let { X ~} be the set of right eigenvectors of the matrix K. We assume 
explicitly that K is semisimple, i.e., that the set { X ~} is complete. This is 
certainly the case if K has no repeated eigenvalues. Then we take the initial 
conditions 

N-- I  
P ( ~ , t = 0 ) = ~ ( ~ )  ~ c~X ~ (10a) 

0t=O 
N-- I  

G ( { , t = 0 ) = 6 ( ~ )  ~ a=Z ~ (10b) 
~ = 0  

From Eqs. (8), for p =  1 one finds ( 6 { ) = 0  or ( 3 x ) = a t .  This result is 
precisely what one would expect. For p = 2, Eqs. (8) and (9) yield 

((6~)2) = _-2 ~ (ul--ff)(J,)l (11) 
- / = 1  

From Eqs. (8) and considerable algebra, one finds that the leading 
terms in ((6~)'-) are 

(6~),-} = 2  1 ~  (1 s, - ,  sp s t  - F L I ' , L ) t ,  , F , , , , , (u , , -a)  P,, 

sp , st] + ~] (u~-a)(1-FSPLFrL)t., I I" . . . .  L,,q(Fr)q. s L , , P ,  (12) 
Imnqst  

822/85/1-2-12 
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The development of this equation and many algebraic details of other 
derivations in this paper can be found in the dissertation of one of the 
authorsJ ~5) The notation F sp in Eq. (12) is the modified Green's function, 
FSP(z)---(z-K) - I -  IX~ Y~ where X ~ and Y~ are the right and left 
eigenvectors of the matrix K corresponding to eigenvalue 2= (sp stands for 
"special"). The other Green's function is F,.(z)= (z + 2 r - K )  -~. First note 
that Eq. (12) is independent of the coefficients c= and a= of Eqs. (10). That 
is, the leading-order term is independent of initial conditions. For the 
Markovian case (r-* oo) Van den Broeck and Mazo 14~ found an algebraic 
technique which gives ((6x)'-) in terms of the transition rates {kj} and 
{lj} and the fluid profile uj; the advantage of this technique is that one 
does not need to construct the Green's functions P P  and Fr explicitly. 
However, for the more general (non-Markovian) case of Eq. (12), we do 
not have an extension of the method of ref. 4. That is because of the 
appearance of the inverse operator (1-FSpLF,.L)I~, l , which is difficult to 
handle algebraically. 

The next problem to consider is the next-to-leading order term. We 
have only treated this problem for the special case r =  ao, i.e., the 
Markovian case. With more algebraic effort the persistent case can be 
treated by the same method. 

One can find from Eq. (11) the following general functional 
dependence: 

( (6x )  2) = 2 D ~ t  + B + o( 1 ) (13) 

Van den Broeck and Mazo (4) found the coefficient of the first term, Dr 
The second term (in Laplace space) has the form 

( ( ' ~ ) ~ - ) = - '  . . . .  ,.ibu.o. 

N Yi Y~ -- a) p~t 
2 E (ui--fi)P~' ~. - 7 ~ ,  i = - -  (U  

2 N Y# Yg X+ 

" o,:;t,-0 / ] r  i , j = l  "~ i  ff . r )  c 2~ (14) 

We have generalized the method that Van den Broeck and Mazo t41 
used to evaluate D~n- to compute B directly in terms of the rate coefficients 
{k j} and {/j} without the necessity of solving the eigenvalue problem for 
the matrix K. In particular the first term of Eq. (14) (independent of initial 
conditions) is 
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- ( u , , - a )  I'+,, ' - +.. 

' ~ q = l  s = l  i = 1  

++i++i ++ " =  r =  ] 

i 

E P+r'h+ 
r = l  

(15) 

where hr is given by 

h r  ~ - -  - -  s l  

r= I I= l \k tP~ ' , ]  ( u , , , -  a) P , ,  

+ ,Z=, .,,Z-, (.,,,- P?,', 

The derivation of this result can be found in ref. 15. A similar, but much 
more elaborate procedure gives the second term of Eq. (14) as a function 
of transition rates and the fluid profile. We do not show it here to save 
space; it requires using the procedure of ref. 4 two times. ~16~ 

4. T H E  C O N T I N U U M  L I M I T  

Taylor dispersion is mostly, though not exclusively, studied in flowing 
fluids, i.e., in the continuum limit. The results for stratified media go over 
into the classical results of Taylor 12~ and Aris t ~81 when the number of layers 
approaches infinity, the width of each layer approaches zero, and the 
transition rates are scaled to give a reasonable limit/41 In this section, we 
study the corresponding continuum limit for the case of the persistent walk. 

Here we shall only consider the case when all the kj are the same, k, 
and all the Ij are the same, /+ the homogeneous case. The general case 
presents no new questions of principle. We introduce the layer thickness i l 
and the length y =jq. 

In the continuum limit, probabilities must be replaced by probability 
densities, so we define 

(P (x ,  j ;  t) 
p (x ,  y, t ) -  (16) 

I? 

and similarly g(x ,  y,  t) = G(x ,  j ;  t)/r I. Now take the limit N--+ c~, k, l---> or, 
11--+ 0 in such a way that the products N,1 = L,  kq  = v, and lr/= w remain 
finite. The discrete variable j goes into the continuous variable y, 0 ~< y ~< L. 
The stratified velocity becomes the continuous velocity field u(y) .  In this 
limit Eqs. (3) and (4) go over into 
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O,p(x, y, t) = ---~v -- w O,,p(x,. y, t) v +~.__O,,g(x,W _ Y, t) 

- u ( y )  O,.p(x, y, t) (17a) 

1) - -  W 

O,g(x, y, t )=  --V+~rl------~'OvP(X'2 " ,V' t)------~--O.,,g(X, y, t) 

--2rg(x, y, t)--u(y)O.,.g(x, y, t) (17b) 

We shall treat here only the case without bias, v--w. We wish to 
determine the (approximate) equation for p(x, y; t) averaged over the 
transverse (y) direction. This quantity 

n(x, t) - f~  p(x, y, t) dy (18) 

does not obey, rigorously, a closed equation of motion. However, on a long 
time scale it does obey an approximate closed equation. The situation is 
similar to that in ordinary Taylor diffusion. In the latter case, the 
approximate equation is just the diffusion equation with an effective diffu- 
sion coefficient Dell. 

The problem is to eliminate the fast variables. The only slow variable 
in the problem is n(x, t), Eq. (18). we assume that, after some induction 
time, the time dependence ofp(x, y; t) and g(x, y; t) comes from the time 
dependence of n(x, t), the slow variable. More specifically, we assume that, 
after the induction period, p and g become functionals of n(x, t), 

p(x, y, t ) = p ( x ,  yIn( . ,  t)) (19) 

and similarly for g(x, y; t). This is the same as Bogoliubov's hypothesis ~'v~ 
in the kinetic theory of gases. 

It is convenient to introduce dimensionless variables O=(v/l) t ,  
= x/L, and p = y/L. Equations (17) become 

Oop(~, p, O) = - l~ f (p)  O~p(~, p, O) -Opg(~,  p, O) (20a) 

Oog(~, p, O) = - /~ f (p)  O~ g(~, p, O) -Opp(~,  p, O) 

- (2rL/v) g((, p, O) (20b) 

where we have written u(p)= ~f(p) and the parameter p is defined by 
ll =- ~/v. Here ~7 is the mean speed of the convective flow and f (p)  describes 
the shape of the flow profile. 

It can be seen from Eq. (20a) that g is the transverse component of 
the probability current. Consequently we have the boundary conditions 
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g(p) = 0  at p = 0  and p =  1, and Opp(p) = 0  at p = 0  and 1. The condition 
on g follows from the assumption that the boundary is reflecting; that on 
p follows from Eq. (20b). 

Let us expand the functions p and g in powers of the small parameter lt, 

p=pO+pp~ + p2p2 + ... (21) 

and similarly for g. The coefficients pi and gi may contain additional p 
dependence. It then follows that, to order p2, n satisfies 

Oon(~, O) = - p  dpf(p)  O~p ~ _p2 dpf(p)  Ocp ~ (22) 

pO and p�91 can be computed explicitly as shown in the Appendix, in a way 
similar to that familiar from the kinetic theory of gases. Reverting to the 
original dimensional variables, one gets 

a,n(x, t) = - a axn(X, t) - L  \ v - / I o  dy{f (y)  - f ]  

x dy' dz [ f ( z ) - f ]  O,.xn(x, t) (23) 

where f is defined as f =  (1/L)I~ dy f(y) .  
The coefficient of the term O.,.,.n(x, t) in Eq. (23) is the effective diffu- 

sion coefficient. By changing the order of integration, it can be written a s  

= t~(2r)  L _ f ]} - "  Ooo.-Markov L\v:/ 0 ay (24) 

which is manifestly positive. The effective diffusion coefficient for the classi- 
cal Taylor case, DMarko~, is recovered in the limit v, r-+ oo in such a way 
that the ratio v2/(2r)-Dmo~ remains finite. D~ot is interpreted as the 
molecular diffusion coefficient. 

Thus we see that even when diffusion in the direction transverse to the 
flow is persistent, the motion in the longitudinal direction still obeys a con- 
vective diffusion equation of precisely the same form as when the transverse 
diffusion is Fiekian. 

We now have two expressions for the effective diffusion coefficient. For 
the continuous case we have Eq. (24), while in the stratified, discrete case 
we have Eq. (12). The continuous transport equation was derived from the 
discrete one by a limiting process, and the effective diffusion coefficient 
arose naturally in that process. Nevertheless, it would be worthwhile to see 
directly how Eq. (12) reduces to Eq. (24) in the continuum limit. 
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In order to see this we need the explicit form of the Green's function 
( K - L F r L )  -~ in the continuum limit. The notation is a bit misleading 
since ( K - L F r L )  has a zero eigenvalue and hence no inverse. What we 
mean is the modified Green's function, the inverse on the subspace left 
when the zero eigenspace is projected out. One finds that this function 
satisfies a simple second-order differential equation, the solution of which 
must be used when the sum in (12) is turned into an integral. The details 
of the calculation can be found in ref. 15, and (24) is the result. 

5. D I S C U S S I O N  A N D  C O N C L U S I O N S  

Taylor dispersion is the enhancement of diffusion parallel to a flow 
caused by diffusion transverse to the flow. In the case when the system is 
stratified transverse to the flow, the transverse diffusion is modeled as a 
random walk, usually an ordinary Pearson walk. In this paper we have 
investigated the case where the transverse walk is a persistent walk, 
perhaps the simplest non-Markovian walk. 

The main conclusion to be drawn from this work is that replacing the 
Pearson walk by a persistent walk makes no qualitative difference to the 
results. One still gets enhanced diffusion parallel to the flow, which is 
normal (i.e., not anomalous). Of course, the numerical value of the effective 
diffusion coefficient will vary between the two cases. As discussed in Section 
1, this holds only if the system size in the longitudinal dimension is finite. 
Otherwise, one can get anomalous diffusion. However, the case of finite 
transverse system size is one of great experimental interest. Just as for 
normal Taylor diffusion, these results hold at long times, long compared to 
the time necessary for the diffusing particles to sample the entire transverse 
velocity gradient. 

If k is the transition rate and 1/is the layer thickness, then D m o  I = kr] 2 
is the molecular diffusion coefficient in the continuum limit of a Pearson 
walk. More strictly stated, one goes to the continuum limit by sending 
r/--* 0, k--* ~ so that kll 2 is fixed; this fixed value is interpreted a s  O m o  I . 

For the persistent walk (without superposed flow), one takes the limit 
v--* oo, r--* oo in such a way that v2/(2r) is fixedl6"71; this fixed value is 
interpreted as Drool. Hence, our result (24) has precisely the same form as 
the classical Taylor result when expressed in terms of Dmo~. The difference 
is in the interpretation of D mo  I in terms of mesoscopic parameters of the model. 

We have studied not only the effects of persistence of the effective dif- 
fusion coefficient, but also the next-order (constant) term in the asymptotic 
behavior of ( (~x)2) .  We have calculated the result in detail only for the 
Pearson-walk case. As was the case for the leading term in that case, 
the formal expression in terms of the eigenvalues and eigenfunctions of the 
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transition matrix can be written solely in terms of the initial probability 
distribution, the steady-state probability distribution, and the transition 
states. It is not necessary to actually solve the eigenvalue problem. 

For the leading term in ((fix)'-) in the persistent case, Eq. (12), we 
have not found it possible to reduce it to a form depending exclusively on 
the transition rates, steady-state probabilities, and the flow profile u j, 
mainly because of the appearance of a complicated inverse matrix. To get 
numerical results for this term will require explicit computation of the 
eigenvalues and eigenvectors of the transition matrix K. 

In summary, the replacement of a Pearson walk by a persistent walk 
makes quantitative, but not qualitative, changes in Taylor dispersion. 

A P P E N D I X  

To derive the results (22) and (23) one starts from the dimensionless 
equations (20). Using the definition for the reduced probability density 
[see Eq. (18)] and the constraints imposed by the boundary conditions, 
one finds after integrating over p 

Oo(p, O) = - i t  dp f(p) Or (AI) 

Substituting the expansion for p, Eq. (21), and keeping powers oflt up to 
second order, one gets Eq. (22). 

One evaluates p0 and p l by using Bogoliubov's functional hypothesis, ~ 17) 
Eq. (19). From the boundary conditions, (15) 01,gO= O, pO= n(~, 0). Further- 
more, 

(Oop} I = -Opg t -  f(p) Or ~ 

(Oog)'= - O p p ' - ( ~ - )  g' 

After some manipulations one finds that 

(Oop)l=--fd~'6n~,O) dzf(z) (, 

(A2) 

(A3) 

Substituting ~his value of (Oop) 1 on the left-hand side of (A2) and solving 
for gl, one finds 

g ' =  - - f [  alp' [ f ( p ' ) - / ]  Ocn(~, O)+c(~, 0) 

From the boundary conditions, c(~', 0) is zero. 

(A4) 
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Finally, p~ is found from Eq. (A3), i.e., by setting (Oog) j =0  and sub- 
stituting gl from the value given in (A4). After integration one finds 

p ' ( ( , p ,  0)= (~-~ -) 0~n((, 0) 

} 
Substituting pO =n(~, 0) and (A5) in Eq. (22) and transforming to the 

original variables with dimensions (x, y, t), we finally get (23). 
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